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Ehrenfest times for classically chaotic systems
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We describe the quantum-mechanical spreading of a Gaussian wave packet by means of the semiclassical
WKB approximation of Berry and Balazs@J. Phys. A2, 625~1979!#. We find that the time scalet on which this
approximation breaks down in a chaotic system is larger than the Ehrenfest times considered previously. In one
dimensiont5

7
6 l21ln(A/\), with l the Lyapunov exponent andA a typical classical action.
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According to Ehrenfest’s theorem@1#, the propagation of
a quantum-mechanical wave packet is described for s
times by classical equations of motion. The time scale
which this correspondence between quantum and clas
dynamics breaks down is called the Ehrenfest time. If
classical dynamics is chaotic with Lyapunov exponentl,
then the Ehrenfest timet is of orderl21 ln(A/\) ~with A a
typical classical action of the dynamical system! @2#. There is
actually more than a single Ehrenfest time, correspondin
different types of semiclassical approximations. Althou
they differ only by a numerical coefficient,t i
5cil

21 ln(A/\), the structure of the wave function chang
qualitatively from one time scale to the next.

Up to a timet1, with c151/6, the initial coherent state
will retain its Gaussian form with vanishing error in the lim
\→0 @3,4#. For longer times up tot2, with c251/2, the
uncertainty in the position and momentum of the parti
remains small but the phase-space structure of the w
packet deviates strongly from a Gaussian. For times gre
thant2 the wave function no longer has the form of a wa
packet~this is the ‘‘mixing regime’’ of Refs.@5,6#!, but up to
a time t3 it can still be described semiclassically by th
time-dependent WKB approximation of Berry and Bala
@7#. As we will show in this paper, the WKB representatio
implies c357/6 for a single degree of freedom~with simple
generalizations for higher dimensions!. This is larger than the
valuec352/3 obtained by Bouzouina and Robert@6# from a
different semiclassical approximation.

Let us start with the Gaussian one-dimensional wa
packet

C~x!5S a

p\ D 1/4

expS i
p0x

\
1~ ib2a!

~x2x0!2

2\ D . ~1!

Initially b(t50)50 anda(t50)5pF /L, wherepF and L
are the typical classical momentum and length. The typ
classical action isA5pFL. The parametersx0(t),p0(t) fol-
low the classical trajectory for\!A. We will measure the
momentum and coordinate in units ofpF andL, respectively,
so that a(0)51 and A51. For chaotic dynamics with
Lyapunov exponentl one hasa(t)}exp(22lt), hencea
!1 for t@1/l.

To describe the time evolution in phase space we cons
the Wigner function
1063-651X/2002/65~3!/035208~3!/$20.00 65 0352
rt
t
al

e

to

ve
ter

e

al

er

W~x,p!5E CS x1
y

2DC* S x2
y

2De2 ipy/\
dy

2p\

5
1

p\
expS 2

a~x2x0!2

\
2

@p2p02b~x2x0!#2

a\ D .

~2!

The wave packet is centered atx0(t),p0(t) and for a(t)
!1 becomes highly elongated and tilted with slopeDp/Dx
'b. It has length l i5A\(11b2)/a and width l'
5A\a/(11b2), so that the area in phase space is conser
exactly, l il'5\. The Gaussian quantum wave packet sa
fies the classical Liouville theorem.

The Gaussian form~1! takes into account the elongatio
of the wave packet, but not the curvature that develops
time and results in a bending of the packet. To describe
curvature we add an imaginary cubic term in the exponen
Eq. ~1!,

C~x!5S a

p\ D 1/4

expS i
p0x

\
1

~ ib2a!x2

2\
1 i

gx3

3\ D . ~3!

~For simplicity we have putx050.! The cubic term leads to
an appreciable phase shift over a lengthl i.(\/a)1/2 when
(g/\)(\/a)3/2*1, hence whena(t)&\1/3g2/3.

For a!\1/3g2/3 the Wigner function takes again a simp
form, in terms of the Airy function Ai

W~x,p!5
a1/2exp~2ax2/\!

p\1/2~g\2/4!1/3
Ai S p01bx1gx22p

~g\2/4!1/3 D .

~4!

One can check thatW(x,p)→d(x)d(p2p0) when\→0 ~at
fixed a), by means of the identity lim«→0 Ai( z/«)/«
5Apd(z). At finite \ the wave packet is extended along t
curved line p5p01bx1gx2. Since p,p0 ,x are of order
unity, the two parametersb andg are of order unity as well
~in contrast toa, which is !1). The transverse width is o
order

l''g1/3\2/3~11b2!21/2. ~5!

The length of the packet remains atl i'A\(11b2)/a. Since
now l il'@\, the Liouville theorem no longer holds.
©2002 The American Physical Society08-1
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To obtain the Ehrenfest time, we parametrize time as

t5
c

l
ln

1

\
. ~6!

The classical limit for a chaotic system means\→0, t→`
at fixedc. Different coefficientsc follow from different semi-
classical approximations. If we use the Gaussian w
packet~1!, without the cubic term to account for the curv
ture, then we needa(t)@\1/3g2/3. Sincea}e22lt}\2c we
needc,1/6. The upper limit ofc gives the first Ehrenfes
time t15 1

6 l21 ln(1/\).
The classical limit can be reached for longer times if

use the wave packet~3!, including the cubic term. The di
mensions of the packet fort.t1 scale with\ as

l'}\2/3, l i}\1/22c. ~7!

For c,1/2 the length of the packet approaches zero in
classical limit. This upper limit ofc gives the second Ehren
fest timet25 1

2 l21 ln(1/\).
For t.t2 the length of the wave packet exceeds the s

of the system and is no longer small compared to the ra
of curvature. For these large times we may adopt the se
classical WKB approximation of Berry and Balazs@7#. Con-
sider a curve in phase spacep(x) and a phase-space distr
bution r„p(x),x…. Both p and r evolve in accordance with
classical equations of motion. Fort.t2 the functionp(x) is
multivalued with an exponentially large number of branch
;exp@l(t2t2)#. The quantum wave function in this ‘‘mix
ing’’ regime has the form

C~x!5(
k

f k~x!exp@ isk~x!/\#. ~8!

The summation overk accounts for the different branches
the multivalued functionp(x). The two functionsf ands are
related for\→0 to p andr by the correspondence princip

ds

dx
5p~x!, f 5Ar~p,x!. ~9!

An explicit description of the evolution of the wave functio
~8! for quantum maps can be found in Ref.@8#.

Near the pointxb at which p(x) bifurcates into two
branches, one hasp5pb6aAx2xb, r5b/Ax2xb. The
wave function there is

C5~\/a!1/3b1/2Ai @~a/\!2/3~x2xb!#eipbx, ~10!

up to an overall phase. The phase difference between
bifurcation points can be determined from Eqs.~8! and ~9!.
Because the curvep(x) is not closed, there is no analog o
the Bohr-Sommerfeld quantization rule.

The Wigner function corresponding to the wave functi
~8!, being quadratic inC, contains both diagonal (Wkk

}u f ku2) and oscillating nondiagonal (Wkm} f k
†f m) contribu-

tions. Far from bifurcations, the diagonal contributions to
Wigner function read
03520
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Wkk~x,p!5E expS iy~s82p!

\
1

iy3s-
24\ D u f ~x!u2dy

2p\

5
2

Ap
S 1

\2s-
D 1/3

u f ~x!u2 Ai S 2~s82p!

~\2s-!1/3D .

~11!

We have made a Taylor expansion ofs(x6y/2) and ne-
glected the difference betweenf (x6y/2) and f (x).

If we parametrize time as in Eq.~6! we have for bothl i
and l' the same scaling with\ as in Eq.~7!. The range of
validity of Eq. ~8! is limited by the condition that the differ
ent branches should be distinguishable. This requires tha
different parts of the curvep(x) in phase space should no
get closer thanl' . Their spacing is of order 1/l i ~assuming a
uniform filling of phase space!, hence

l il'!1⇒\7/62c!1. ~12!

The upper limit of 7/6 forc leads to the third Ehrenfest tim

t35
7

6l
ln

1

\
. ~13!

The third derivatives- in Eq. ~11! vanishes at the points
of inflection of the curvep(x). In order to find the Wigner
function there, one should expands(x6y/2) up to terms of
order y5. This leads to a different scalingl'}\4/5 of the
width of the Wigner function near the inflection points. B
cause these are isolated points, they will not contribute to
matrix elements of nonsingular operators~containing only
smooth functions ofx and p). This different scaling should
therefore not affect the Ehrenfest time~13!.

The nondiagonal contributionsWkm to the Wigner func-
tion lead to the ‘‘ghost curves’’ discussed in Ref.@9#. ~Ghost
curves are regions of large values of the Wigner funct
which do not correspond to classical trajectories.! The
Wigner function near these curves is given by the same A
function as in Eq.~11!, but in addition acquires a strongl
oscillating factor. Due to these oscillations the nondiago
terms do not contribute to the matrix elements of nonsingu
operators.~They may play a role in the decoherence by t
environment@10#.! At t*t3 the ghost curves merge with th
~multivalued! curvep(x) and become indistinguishable.

The time scale~13! for the breakdown of the WKB ap
proximation is greater than the Ehrenfest time2

3 l21ln(1/\)
in the mixed regime obtained in Ref.@6#. That shorter time
scale may signal the breakdown of the series expan
sk(x)→( j 50sk j(x)\ j . Then Eq.~9! would no longer hold,
but for t,t3 the representation~8! with a renormalized func-
tion sk(x) would still be valid.

So far we have discussed a one-dimensional~1D! chaotic
system, which in general can be represented by an area
serving map@8#. A familiar example is the kicked rotato
@11#. For mesoscopic quantum dots, however, a more
evant model is thed-dimensional (d52,3) Schro¨dinger
equation with a smooth potentialV(rW). The Gaussian wave
packet then takes the form
8-2
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C~rW !}expF i

\ S S„rW0~ t !…1pW 0•xW1
z ln

2
xlxnD G . ~14!

HereS is the action for the classical trajectoryrW0(t) and we

have definedpW 05mrẆ0 , xW5rW2rW0 , z ln5b ln1 ia ln . As be-
fore, we rescale the momentum and coordinate such tha
typical classical actionA51. Initially, z ln. id ln . Similar to
the one-dimensional case,a ln defines the form of the packe
in coordinate space andb ln5Dpl /Dxn give the angles in
phase space. Substituting the wave function~14! into the
Schrödinger equation one finds Newton’s equation of moti
for rW0. The spreading of the wave packet in phase spac
described by

2 ż ln5
1

m
z lkzkn1

]2V

]r l]r n
U

rW5rW0

. ~15!

This is the equation describing the spreading in phase s
of a small Gaussian bunch of classical particles.

The Wigner function corresponding to the wave functi
~14! has the Gaussian formW}exp(2QlMlnQn /\), where
QW 5(rW2rW0 ,pW 2pW 0) is a vector in 2d-dimensional phase
space. Thed Lyapunov exponentsl i ( i 51,2, . . . ,d) govern
the large-time behavior of the eigenvaluesmi51/m2d2 i 11
}exp(2lit) of the real symmetric matrixM. Because of en-
ergy conservation one Lyapunov exponent vanishes. We
der thel ’s from large to small, so thatl1 is the largest and
ld50.

The wave packet remains Gaussian~preserving the vol-
ume}\d in phase space! until the curvature starts to play
role ~via a cubic term in the action!. The corresponding
Ehrenfest timet15 1

6 l1
21ln(1/\) is the same as in 1D, only

now it is defined through the largest Lyapunov exponentl1.
The second Ehrenfest time, when the length of the pac
exceeds the size of the system, also has the same formt2

5 1
2 l1

21 ln(1/\).
The third timet3 is different ford52,3 from the 1D case

Instead of Eq.~7!, one now has
s.

03520
he

is

ce

r-

et

l'
( i )}\2/3, l i

( i )}\1/2el i t, i 51,2, . . . ,d21. ~16!

The longitudinal dimensionsl i
( i ) correspond to eigenvalue

mi with 1< i<d21, and the transverse dimensionsl'
( i ) to mi

with d12< i<2d. The two unit eigenvaluesmd5md11

51 contribute another factorA\ each to the total volumeV
in phase space covered by the wave packet

V5\ )
i 51

d21

l'
( i )l i

( i )}\7d/621/6el tott, l tot5 (
i 51

d21

l i . ~17!

The available areaVmax is restricted to a shell of constan
energy with thicknessA\, henceVmax}A\. We requireV
&Vmax for the semiclassical approximation, which leads
the Ehrenfest time

t35
7d24

6l tot
ln

A

\
,d>2. ~18!

In conclusion, we examined different time scalest i
5cil

21 ln(1/\) for the breakdown of different types o
semiclassical approximations. These Ehrenfest times d
only by a numerical coefficientci , which may seem insig-
nificant. However, this difference is actually a signal of
different power law scaling with\ of the volumeV in phase
space covered by the wave packet. For short times Li
ville’s theorem dictatesV}\. For long times@parameterized
as t5(c/l)ln(1/\)# the WKB approximation givesV
}\7/62c for a one-dimensional quantum map~such as the
kicked rotator! andV}\7d/621/62c for a d-dimensional con-
servative system. These different power laws reflect the f
damental change in the structure of the wave function w
increasing time and should, therefore, have observable
sequences. Two possible applications are the Loschmidt e
@12# and the quantum shot noise@13#, where the Ehrenfes
time plays a key role.
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